Applying geospatial data for Machine Learning with a focus on social good

Paulo Maia Data Scientist at NILG.AI DSSG Webinar 30th June 2020

 $\square \square$

Unlocking business capabilities using data intelligence

Consulting company in **Artificial Intelligence**

We help small-to-large companies to make informed decisions promoting efficient opportunity handling.

We **adapt the technology** to your business, so you can seamlessly **integrate data** in your daily decisions.

Our Network

Clients

Partners

Meet the team

Kelwin Fernandes PhD Computer Science **CEO**

Ricardo Azevedo MSc Computer Science Data Scientist

Nohelia González M.Arch **coo**

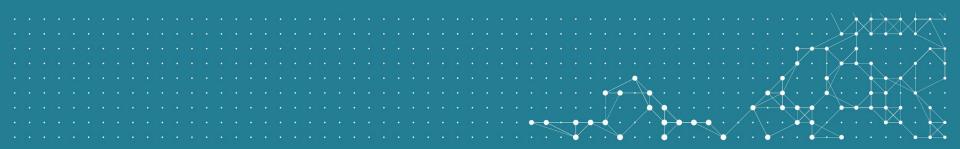
Francisca Morgado MSc Bioengineering **Data Scientist**

Tiago Freitas MSc Bioengineering **Data Scientist**

Paulo Maia MSc Bioengineering Data Scientist

•																											
•																											
•																											
•																											
•																											
•																											
•																											

Û



Spatiotemporal data?

Spatiotemporal (ST) data is defined as data with both a **spatial and temporal component.**

Examples

- Remote Sensing Data
- Route taken by a transport
- Measurements done by a sensor in the street
- Medical imaging (fMRI exam)
- Videos

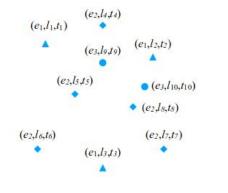
These are applicable in several domains, such as **environmental and climate**, **public safety and human mobility.**

Why we should treat ST data differently

Traditional Machine Learning methods (based on tabular data) **don't work as well in spatiotemporal data.**

- Typically, spatiotemporal (ST) data is in **continuous space**
- Patterns of ST data typically contain **spatial and temporal properties** hard to capture by traditional methods
- Data samples are **not independently generated**
- Traditional methods are very reliant on **manual feature engineering**, which is hard to do on spatiotemporal data.

Data Types - Event



Discrete events occurring at **point locations and times**

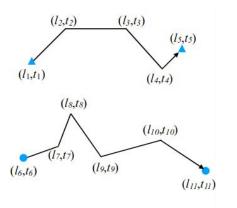
(crime events, traffic accidents, disease outbreaks, social events and trending topics, civil protection)

e_i - Event type **l**_i - Location **t**_i - Time

Events	2	Operatives	🛱 Ground ass	ets 🛨 Aerial Assets	Important even	ts <u>Today's</u>	Events Advanced search (S)			
Event Nr.	Status	District	Municipality	Parish	Locality	Day/Time	Nature	*	G.	Ŧ
2020130093053	\bigcirc	PORTO	PENAFIEL	Termas de São Vicente	TERMAS DE SÃO VICENTE	2020.06.26 14:56	Trauma	2	1	0
2020130093050	\bigcirc	PORTO	GONDOMAR	Fânzeres e São Pedro da Cova	FÂNZERES E SÃO PEDRO DA COVA	2020.06.26 14:55	Patrulhamento, Reconhecimento e Vigilância			0
2020130093041	\bigcirc	PORTO	MATOSINHOS	Custóias, Leça do Balio e Guifões	MATOSINHOS	2020.06.26 14:46	Detritos não confinados	12		0

Sources: http://www.prociv.pt/en-us/SITUACAOOPERACIONAL/Pages/default.aspx?clD=14, https://arxiv.org/pdf/1906.04928.pdf

Data Types - Trajectory

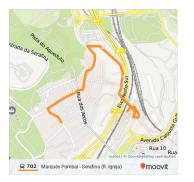


Denote the paths traced by **bodies moving in space over time** (moving route of transports).

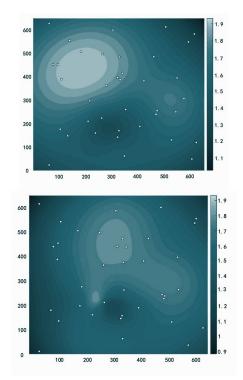
Collected by **sensors in a moving object**, for instance.

Represented by a sequence:

(**I**_i, **t**_i) where **I**_i is the location and **t**_i is the time.



Data Types - Point Reference

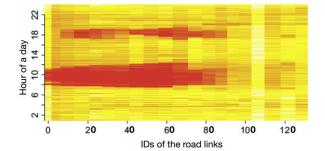


Measurements of a **continuous ST field** (temperature, vegetation, population) over a **set of moving reference points in space and time** - e.g. weather balloons.

Tuple $(\mathbf{r}_i, \mathbf{l}_i, \mathbf{t}_i)$ with measurement value \mathbf{m}

r_i - Sensor l_i - Location t_i - Time

Data Types - Raster Data



ST fields recorded at **fixed locations and time points** (the previous datatype - point reference - had **changing locations**)

e.g. air quality data, traffic flow/car speed

For *m* fixed locations and *n* timestamps, we can present the data as a matrix R(mxn).

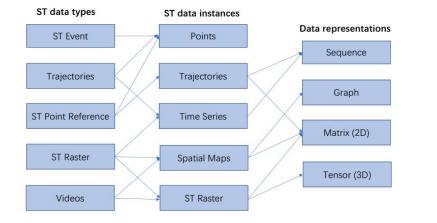
Each entry \mathbf{r}_{ij} is the measurement at location \mathbf{s}_i at timestamp \mathbf{t}_i .

•																											•
																											•
																											а. —
																											•
																											÷ -
																											•
																											2
																											•
																											•

02 Treating this data

																																			\star	
																														\searrow						
																											•	-							\mathbf{k}	Ą
																											• /			\succ	4	N •		×		Y
																					~					• ,	4.		×,		. \	\rightarrow	$ \rightarrow $			
																			¢							\leftarrow	ξ.		X		•)			\mathbf{A}		
																									×		\rightarrow	$\leftarrow \checkmark$				\leftarrow	$ \rightarrow $			
																-	<u> </u>	 -	_($ \rightarrow $	-					Δ				. \	A,		X	5
																		ζ.		$\overline{\checkmark}$		/		$\overline{\checkmark}$		~				≥•						5

Representation types



There is not a **best** way of representing ST data.

Traffic Flow Prediction

- Traffic flow graph
- Cell region-level traffic flow matrix

Wind Forecasting

- Represent sensor data as 2D matrices containing wind intensity: (location, timesteps)
- Can also represent as 3D tensor: row region sensor ID, column region sensor ID, timestamp.

Modeling approaches in the literature

	Trajectories	Time Series	Spatial Maps (Image-like data & Graphs)	ST Raster
CNN	(24), (67), (103), (117), (150)		(11), (154), (199), (152), (100), (31), (139), (148), (184), (80), (69), (15), (72), (200), (113), (54), (68)	(188), (12), (123), (141), (106), (74), (131), (149), (116), (128), (128), (76), (78)
GraphCNN			85, 155, 94, 111, 144, 22, 92, 175, 44, 8, 85, 155	
RNN(LSTM,GRU)	42), (77), (165), (99), (91), (163), (35), (159), (64), (38), (135), (181), (88), (81), (190), (37), (169), (166), (41), (65), (192)	(126), (27), (177), (90), (23), (89), (178), (17), (179), (101), (97), (14), (34)	(125), (107), (156), (2), 3), (39), (62), (162)	(23)
ConvLSTM			1, 98, 161, 198, 151, 73, 201, 70, 147	
AE/SDAE	(115), (197), (13)	(55), (167), (104)	(32), (16), (191), (48), (52), (182)	
RBM/DBN	[117]	[136]		[140], [58], [66]
Seq2Seq	[82], [170], [20], [171]	[90], [89]		
Hybrid	(164), (142), (108)	[96], [59]	189 , 30 , 19 , 6 , 174 , 187 , 84 , 109 , 134 , 49 , 176	[105], [127]
Others	(36), (10), (46), (195), (26), (193), (168)	[124], [93]	133, 145, 202, 21, 183, 146, 79, 43, 185, 186, 132	[122], [63], [71]

Recurrent Networks

- Mostly used for trajectories and time series

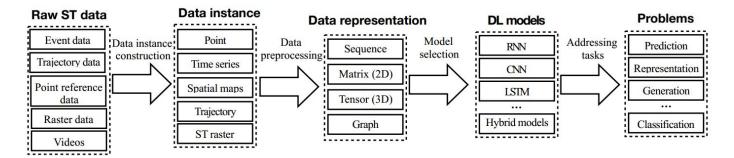
CNNs

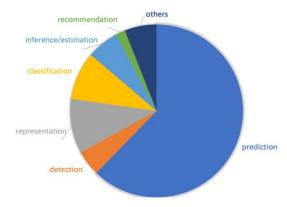
- Mostly used for map-like data (spatial maps/ST Raster)

GraphCNN

- Used for graph data

Pipeline for (most) ST data problems





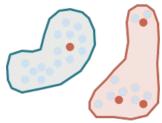
Prediction: predict the future observations of the ST data based on its historical data.

Representation: learn the abstract and useful representations of the input data to facilitate downstream data mining or machine learning tasks.

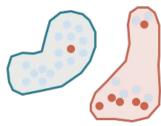
Classification: separate geospatial data in classes.

Estimation: information inference.

Model evaluation for geospatial problems

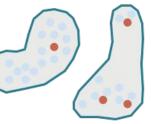


Fraud Time T

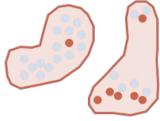


Fraud Time T+1

Temporal Partition

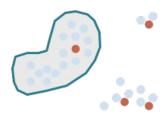


Fraud Time T

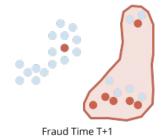


Fraud Time T+1

Combined Spatial and Temporal Partition



Fraud Time T

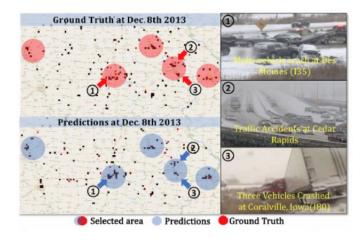


•																											
•																											
- 1																											
•																											
•																											
•																											
•. · ·																											
•																											
•																											

Use Cases

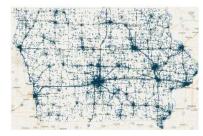
																																		∇ / \Box			<u> </u>	$^{\sim}$	
																														•	1		• /	•				$ \rightarrow $	
																														×			$\not\leftarrow$		•		\bigwedge	• `	ł
																						~							Ń			$\langle \rangle$			\rightarrow				
																				•	•							2	Ħ			Å		• /	\rightarrow		\checkmark		
																							<u>لر</u>				. ,	\leftarrow	<u> </u>	$\overline{}$				\leftarrow		$\overline{}$		1	
																																			Y			\triangleright	4
																			\checkmark		\checkmark			6		γ.			1.				-				<u> </u>		5

Traffic Accident Count Prediction (i)



- Has the goal of improving transportation, public safety and safe routing.
- Challenging:
 - **Rareness** of accidents in space and time
 - **Spatial heterogeneity** (rural vs urban environment have different accident factors).
- Commonly formulated as a **classification** or **regression** problem
 - Will there be an accident in (e_i, t_i) ?
 - Accident count in (e_i, t_i) ?

Traffic Accident Count Prediction (ii)



(a) Visualization of Traffic Accidents

(b) Rainfall Map

(c) RWIS Observation Stations

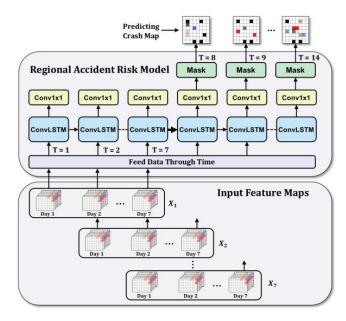
Data Sources

- Target: Crash Data
- Auxiliary: Road Networks
- Features:
 - Satellite Images
 - Traffic Camera Data (i.e. number of vehicles)
 - Rainfall Data
 - RWIS Stations (Temperature and Wind)

Formulation

- Data Instances
 - Map is partitioned in a square spatial grid S (elements s_i).
 - Data Sources above are saved as 3D tensor (s_i, t_i)
 - Map is masked according to road networks
- Target
 - Predict the total number of accidents in a given time window, for cell s_i.

Traffic Accident Count Prediction (iii)



Regional ConvLSTM Model

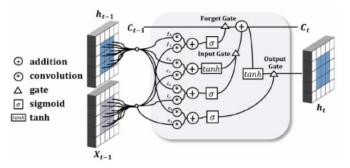


Figure 3: The inner structure of a ConvLSTM cell.

Training and Testing

The last 7 days are predicted based on the data in the first 7 days.

Amount of days chosen is related with the human activity **weekly** pattern.

The first 7 years are used for **training** the model, and the last **year** for testing (partition by time)

Traffic Accident Count Prediction (iv)

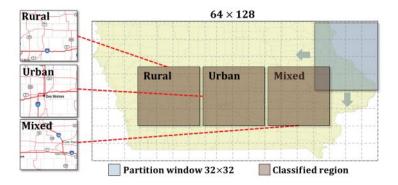
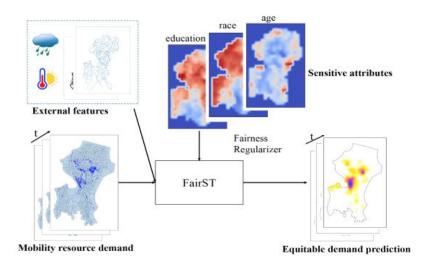


Figure 5: Map partitioning of spatial ensemble model (stride=16).

For dealing with spatial heterogeneity, the authors **learn a model for each window**, and ensemble all the predictions.

Fair Demand Prediction in Mobility Systems (i)

- New mobility systems (e.g. bike-sharing) offer affordable transport options for citizens.
- Current demand prediction models do not deal with social disparities: less demand **might not mean less interest**, but an area with **disadvantaged groups**!



Fair Demand Prediction in Mobility Systems (ii)

• How do we incorporate fairness in this approach?

Individuals of different groups must have access to the same resources.

Group Fairness: The disadvantaged group must experience similar predicted outcomes as the advantaged group

Vertical Equity: Transportation policies must favor the disadvantaged groups

Two fairness metrics added, measuring the **gap** between **mean demand per capita** across two groups, over a certain period of time.

Region-based Fairness Gap: each geographic region has a categorical label (e.g. Caucasian)

Individual-based Fairness Gap: the group label is numeric (e.g. % of Caucasian)

Fair Demand Prediction in Mobility Systems (iii)

• Loss Function is Modified to add the following terms:

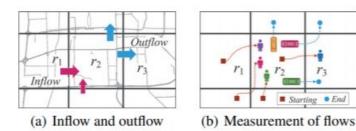
Regression Loss, for penalizing wrong predictions in terms of **demand value** (Mean Absolute Error)

Region Fairness Loss, for penalizing the model when the demand per capita in a region containing both groups **is not the same**

Individual Fairness Loss, for penalizing the model when the demand per capita in a region containing both groups **does not favor the disadvantaged group** (weighted).

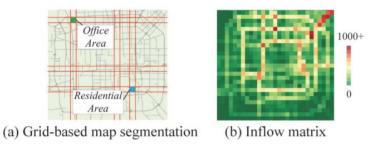
City Inflow/Outflow Prediction (i)

- Crowd flow prediction is important for managing **traffic and public safety.**
 - Measured by the number of pedestrians + cars + people traveling on public transportation systems.
 - This paper uses **GPS data** for measuring the number of pedestrians.
- Challenging problem due to:
 - Spatial dependencies (outflow in a region affects inflow in another)
 - **Temporal dependencies** (traffic congestion at 8 am affects typical traffic at 9 am, and people's routine changes throughout the year)
 - External factors (e.g. weather)



City Inflow/Outflow Prediction (ii)

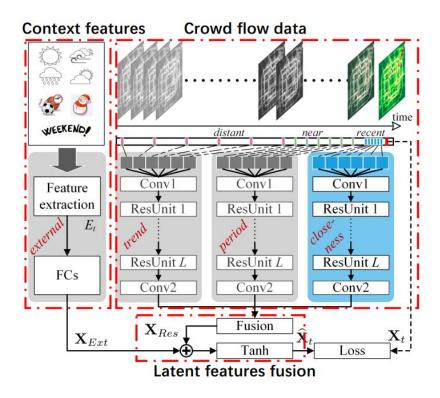
• Problem and label definition

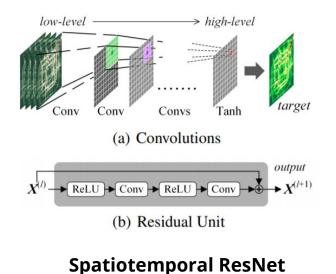


The authors define an **inflow** and **outflow** 2D matrix, for each **timestep**, after dividing the map in a grid.

Given the **historical observations** up to point **T-1**, they want to predict the count of inflow and outflow at point **T**.

City Inflow/Outflow Prediction (iii)





Concluding...

There are **many ways** spatiotemporal data can be used for AI applications.

There is not much (if any?) research done using open data in Portugal. So why not start with it?

http://centraldedados.pt/

http://dadosabertos.pt/

I'm sure **DSSG** would give you some exposure and help you find **motivated volunteers**.

(well, I'm biased)

2020 nilg.ai. All rights reserved

Applying geospatial data for Machine Learning with a focus on social good

Paulo Maia Data Scientist at NILG.AI DSSG Webinar 30th June 2020

 $\square \square$