ML System Design: Federated Learning

NILG.AI, together with Neu.ro decided to try a format similar to a Reading Club, where the topic is not a specific paper but an entire research area. After a short discussion, we had a System Design part where the team described a specific use case to apply the new approach. Ideally, the discussion would stick to the format of a typical System Design interview — however, our first exploratory attempt appeared to be rather a freestyle.

In our Session #1, held on 2021–05–27, an ML team from NILG.AI led by Paulo Maia, and an MLOps team from Neu.ro led by Artem Yushkovsky met. The leaders researched the topic preliminarily and prepared a theoretical presentation for ~30-min so that everyone could be on the same page. Then, we had a ~90-minute practical part where both teams discussed technical aspects (both ML and MLOps) of the architecture for a given use-case, putting their thoughts to a Miro board.

The outcomes are shared in a Medium article (7-10 min read), where you can see a high-level overview of the outcomes of this session and the takeaways.

Let us know if you have any comments about this topic!

Like this story?

Subscribe to Our Newsletter

Special offers, latest news and quality content in your inbox.

Signup single post

Consent(Required)
This field is for validation purposes and should be left unchanged.

Recommended Articles

Article
AI insights: strategic planning best practices for 2026

Discover strategic planning best practices for AI and data projects to boost ROI, efficiency, and decision-making in 2025.

Read More
Article
Machine Learning Algorithms Explained: Practical Guide to AI Models

Discover machine learning algorithms explained with real-world examples and guidance on selecting and deploying the right AI models.

Read More
Article
A Practical Guide to Reducing Time to Market

Discover how to accelerate your launch with practical strategies for reducing time to market. Learn to leverage AI, automation, and lean processes.

Read More