In recent years, the financial services industry has been innovating technologically, supported by a complex ecosystem including banks, financial service providers, and start-ups (link). Within this blogpost, we showcase our vision of AI in Financial Services.
AI in Financial Services
From our point of view, we can group use cases in AI in three distinct entities, depending on the level of granularity
Microentity Level: At the microentity level, the main purpose of AI is the optimization of operations/transactions without compromising the quality of service. This includes business goals such as minimizing costs and improving user experience.
User level: At user level, the goal is to increase the user value (e.g. by keeping him engaged with the service) and control risk in the services provided to the user.
Company level: At company level, we aim to optimize the company portfolio and return on investments.
What kind of data do I need?
Although most of the use cases described below require specific data sources, we can define a few general data points for each entity. If you work in this area and see a data source you haven’t started acquiring in a structured way yet, get to it!
Microentity: Transactions can be characterized by a value, channel, date, involved parties and other characterization/description (e.g. food, electricity, …)
User: All users should have contractual data (contract start date, contract conditions) as well as behavioral data (customer service tickets, cash flow, …).
Company: A company is characterized by its portfolio size and distribution, external market indicators and economic context, and comparison with competitors.
Companies can also be grouped by its main mission/objective. In each of them, we can further detail use cases for each entity type.
Now, let’s review some specific use cases per company type in the financial services industry. Overall, the use cases focus on using AI for mitigating risks, providing a better experience for the user and guaranteeing business sustainability.
Banking and Money Transfer
Banking and Money Transfer companies transfer money from entity to entity. Companies within this group include Revolut, N26 and Monzo.
Microentity Level:
Transaction categorization: User transactions can be categorized by business name, location and business type, for instance. Take as an example one product by one of our clients, Pentadata, for merchant identification given a transaction description.
Fraudulent transaction detection: Detecting and blocking fraudulent transactions is critical to increase the confidence of customers in the services.
Money Laundering Detection: Machine learning has been replacing rule-based models for anti-money laundering operations, to minimize the number of false positives.
Predicting recurrent transactions: User transactions can be grouped into recurrent transactions to later on create visualizations on the fixed expenses.
User level
Optimizing spending habits / forecasting months spendings: Based on the historical data of the transactions, it is possible to forecast month spends and make personalized suggestions of spending habits to the user, per category.
Churn Prediction (CRM): Predicting which users are going to churn, and the best action to prevent them from churning, is one of the most common marketing use cases, and can help significantly increase the customer lifetime value.
Upselling (CRM): Determining which services we should upsell the user to, depending on the user behavioral patterns.
Chatbots/Automations: Automating the most frequent questions the users have will lead to reduced spendings in customer service.
Company level
Optimize physical store locations:
Forecasting business and market indicators: user growth, net working capital, …
Payments
Payment companies transfer money from a person to a company, such as Paypal and Stripe.
Microentity Level:
Fraudulent transaction detection: detecting and blocking fraudulent transactions – e.g. values out of the ordinary – can help reduce the occurrence of fraudulent transactions.
Predicting card declines: Payments can be declined by the issuing banks for various reasons, such as the card exceeding its credit limit. Predicting and addressing this is one of the use cases Paypal focused on the most using AI (link).
User level:
Optimizing user experience: explaining to the users the reason for certain actions in an automated manner (e.g. suspected fraud) leads to increased confidence in the services.
CRM promoting certain behaviors or feature-usage.
Paypal for business / stripe for business fees
Company level:
Optimizing flows of money: money transfers or currency exchange can be optimized to be performed at the optimal time period, to reduce transaction costs.
Internal investments of funds: deciding on the best way to invest funds.
Compliance detection in reports.
Financing
Finance companies – such as Cetelem, Klarna and Cashea, make loans to individuals and businesses.
Microentity Level:
Claims approval or denial: Automating and detecting errors in claims can reduce manual work and improve the claim processing speed. If you’re curious on how this could be applied in the healthcare domain, take a look at our blogpost we wrote a while back!
User level:
Credit scoring: credit scoring uses Artificial Intelligence to predict the likelihood of default based on demographic factors, payment history and other financial indicators. We also have a blogpost on more details on Artificial Intelligence applied to credit scoring. Similar use cases consider the renegotiation of payment conditions and default prediction.
Company level:
Portfolio optimization: at a company level, companies can aim to best determine the optimal risk level for credits (e.g. spread, short-term, long-term).
If you’re curious about some of these use cases but aren’t sure how beneficial it will be for your company, worry not! In our Data Ignite course, you can find out how to realize potential risks and mitigation strategies at the project conception stage, and learn a common language to discuss AI projects between technical and non-technical teams.
Course, Templates
Data Ignite
Find out how to realize potential risks and mitigation strategies
Within the investments and brokers groups, we consider companies that facilitate transactions between traders, sellers, or buyers. Examples include DeGiro, trading212, xtb and multiple P2P lending companies (PeerBerry, Mintos, estateguru, GoParity, etc).
Microentity Level:
Default or delays forecasts: forecasting payment delays/defaults is useful to take action ahead of time.
Trading bots: automating trading decisions at scale
User level:
User investment recommendations depending on risk profile of the user, recommend financial products to invest on.
Default prediction: predicting loan default before it happens to better determine the established conditions.
Risk assessment for loan originators: loans typically have a risk level associated, depending with the expected gain/risk trade off. Automating this based on historical data is important to make better decisions.
All CRM-related use cases
Company level:
Portfolio balancing: determine the best balance between risk and gain for the company’s portfolio.
Lastly, FinTech companies are software companies that provide services to Financial Services, and build part of the use cases listed above. The crypto Industry is also fulfilling the roles of brokers, banking, money transfer, payments, using different technologies.
There are some general use-cases related to KYC (Know your Customer), with general problems such as Legal Document Validation, knowledge tests…
Conclusion
AI in Financial Services is on the path to be a tool to revolutionize the provided services. At the scale of people using financial services, and the fact that most services are online now, facilitating the acquisition of data and the creation of value, there’s a huge potential for innovation and growth in this area.
Special offers, latest news and quality content in your inbox.
Signup single post
Recommended Articles
Article
NILG.AI Joins Microsoft’s Learn with Creators Program
Jan 11, 2025 in
News
We are excited to share a remarkable milestone for NILG.AI: Microsoft has recognized our YouTube channel as a key contributor to the global education ecosystem in Artificial Intelligence. This honor comes with our inclusion in the prestigious Microsoft Learn with Creators program. Our Mission and Growth Since its inception in 2023, our YouTube channel has […]
Imagine being able to make better decisions about where to live, where to establish a new business, or how to understand the changing dynamics of urban neighborhoods. Access to detailed, up-to-date information about city environments allows us to answer these questions with greater confidence, but the challenge lies in accessing and analyzing the right data. […]
EcoRouteAI: Otimização de Ecopontos com Inteligência Artificial
Sep 30, 2024 in
News
O Plano Estratégico para os Resíduos Urbanos (PERSU) 2030 definiu metas ambiciosas para a gestão de resíduos em Portugal, com o objetivo de aumentar a reciclagem e melhorar a sustentabilidade ambiental. No entanto, os atuais índices de reciclagem e separação de resíduos ainda estão aquém do necessário, tanto a nível nacional quanto europeu, criando desafios […]
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.