Artificial Intelligence at COVID19

What we are overlooking

Every aspect of our daily routines was hit by COVID this year, from our work and industries to social interactions. Nine months have passed since we started lockdowns, and the numbers are still increasing. So, in this article we wanted to discuss what we can do with Artificial Intelligence at COVID-19.

The general public opinion is that governments worldwide have mismanaged the pandemic, with decisions driven mainly by political fundamentalisms. For example, we just observed how the Portuguese government announced more restrictions on business operations and mobility to reduce family encounters. The decision was made based on the idea that most of the infections (67%) happened in such a context (here). About a month later, it turned out that the figure is much lower, representing just 10% of the known cases (without any amendment to the decisions) (here). I guess somebody forgot to attend his class on Survivorship bias!.

The long-term impact of these decisions is much larger than we think. A major economic crisis is arising from this situation, and thousands of apparently non-related deaths that nobody wants to explain, even less to be accounted for. This is how considering your biased beliefs above evidence backed by data became catastrophic.

However, there is an alternative: using data to support decision-making. Entrepreneurs, in general, have worked in highly uncertain scenarios for millennia. While most companies learned to embrace data to support decision-making decades ago, politicians of any side of the spectrum seem to be in love with populism-driven decision-making. It’s time for Data Scientists to take the wheel -or at least to be in the cockpit- so we can redirect the debate to the scientific field.

Where can we help?

We all know tackling patient-level applications with AI is promising. However, my opinion is that we should deviate part of our focus from diagnosing COVID and smart respirators to reducing the spread in the first place. As we discussed in our previous blog post, there’s a lot of space for AI at a hospital and at a societal level. With vaccines passing the required tests for market introduction, the hot topic for the next months -years? Hopefully not!- There will be efficient vaccination policies. Even if we have a vaccine, the resources involved in global vaccination will take time to deploy fully. So, we need strategies to vaccinate the right people. That would be a better way of using Artificial Intelligence at COVID.

Let’s sketch an idea of how we could use AI to optimize vaccination.

Optimizing COVID Vaccination with Artificial Intelligence

What’s our goal here? I guess it’s achieving a certain level of group immunity with a minimum number of vaccines. I know there are other factors (operational costs, logistics, deaths), but the number of administered vaccines seems like an intuitive constraint for the next months.
Taking sentiments (and politics) aside, vaccinating the high-risk population is not the ideal solution. For example, you will need to vaccinate dozens/hundreds of elders to reduce the community risk for a nursing home considerably, but just a few to vaccinate the staff that interacts with these high-risk patients daily. This generally happens in any community with low inbound interactions (e.g., prisons).

Predictive Model to fill the gaps

We first need to realize that we are not aiming to vaccinate more people but to more immunized contacts (e.g., a handshake is safe if at least one of the hands is immune to the disease). So, we need to understand the “inbound” risk for a person when designing these policies and the “outbound” risk. Namely, who will contribute the most to the spread of the disease?

Governments and health authorities collected some data about infections. So far, this data has focused on understanding the disease’s impact on the patient and not so much on societal transmission. We need to address this ASAP! Then, let’s say that we are building a predictive model that, given an individual, predicts how many patients will get infected by him (please consider transitivity – i.e., K-order infections). The model may look at attributes such as age, sex, home address, working address, public transportation usage, mobility patterns, profession, stats about the workplace, stats about relatives, etc. Always with a focus on spread potential and not just on personal risk. Most of this information can be extracted from the social security, tax collection, and public registries. Other data can be trickier to obtain, surpassing data protection boundaries (when in doubt, privacy goes first). Take a look at DSSG PT’s open letter to DGS for good guidelines on data collection.

There’s a problem when building such models; we don’t have reliable data on transmissions. Most of the infections are of an unknown source. Therefore, the models we build must consider that we won’t observe most data points and that what’s observed is biased towards infected people with known infection sources (e.g., the child who infected his mother).

Building optimal policies with Artificial Intelligence at COVID: from predictions to decisions

Let’s say we have built such a model that, given an individual, predicts the outgoing expected degree of contagiousness. Who should we vaccinate now? Just the ones with a higher infectious rate? Probably not. If we knew links between persons, we could estimate the graph’s minimum cuts or a vertex cover to ensure COVID won’t move from one community to another. In some local cases, we will have access to such graphs (e.g., inside a hospital, in a school, etc.), and we could aim for the best solution. In most cases, considering the highly dynamic world we live in, we won’t. So, we need to consider heuristic alternatives that deal with partial knowledge graphs by looking at known relationships (e.g., family aggregates and place of work) and the predicted transmission rate per person.

Note on fairness: The model may harm certain groups of people. This is especially true if we consider that some people may work in informal economies, which would limit the visibility of their contact networks. Therefore, a naive method would exclude them from fair and needed access to the vaccine. Take a look at our previous blog post on Fairness in AI for more details.

We understand that the solution described here may not be scalable or even feasible. However, this post’s goal is not to solve the problem but to open the discussion, creating a debate in the data community for proposing solutions that have been overlooked and would undoubtedly increase such programs’ reach.

Do you have any more ideas for applying data science to optimize this massive logistic issue? Let us know!

Do you want to further discuss this idea?

Book a meeting with Kelwin Fernandes

Meet Kelwin Learn More

Disclaimer: the views, thoughts, and opinions expressed in the text belong solely to the author, and not necessarily to the author’s employer, organization, committee, or other group or individual.

Like this story?

Subscribe to Our Newsletter

Special offers, latest news and quality content in your inbox once per month.

Signup single post

This field is for validation purposes and should be left unchanged.

Recommended Articles

Can Your Business Optimize AI Predictive Models?

Predictive models are transforming the AI landscape. They can forecast future events, identify past occurrences, and even predict present situations. However, building a successful predictive model is not as simple as it seems. To achieve an effective predictive model, you need to consider three crucial moments: the prediction time, the prediction window, and the data […]

Read More
Is Your Business Ready for Generative AI Risks?

Generative AI is a powerful tool that many companies are rushing to incorporate into their operations. However, it’s crucial to understand the possible risks associated with this technology. In this article, we’ll discuss the top nine risks that could impact your business’s readiness for AI integration. Stay ahead of the curve, and make sure you’re […]

Read More
Can the STAR Framework Streamline Your AI Projects?

As a manager dealing with AI projects, you may often find yourself overwhelmed. The constant addition of promising projects to the backlog can lead to a mounting technical debt within your team, forcing you to neglect the core aspects of your business. Here at NILG.AI, we have a solution for this challenge: the STAR framework. […]

Read More