Quality Control Automation: Your Manufacturing Game-Changer
Jun 5, 2025 in Industry Overview
Master quality control automation with proven strategies that drive real results. Discover practical insights from industry leaders.
Not a member? Sign up now
Retrain Smarter, Not Harder
Kelwin on Mar 23, 2024
A common question in the domain of AI and machine learning is: how often should you retrain machine learning models? The answer isn’t as straightforward as you might think. It’s not a one-size-fits-all solution, but rather a process that requires careful consideration and strategic planning. In this article, we’ll explore three strategies for deciding when to retrain your machine-learning models.
Before we delve into the strategies, let’s first understand why retraining is necessary. Machine learning models don’t degrade or rot over time, but they do need to be retrained to keep improving. As you gather more data and feedback, you need to retrain your model to gain more experience and improve its performance. Even if you don’t see any changes or improvements in performance, retraining is still beneficial as it keeps your model’s knowledge up-to-date, especially in a domain that changes over time.
The first strategy is the simplest one: never retrain your models. This might sound surprising, but many businesses adopt this approach. They collect data, train a model, and then never retrain it. This strategy is advantageous because it’s simple and doesn’t require any support for training infrastructure. However, the downside is that if your target environment is dynamic and constantly changing, your model won’t be able to adapt to these new realities and will start to degrade over time.
The second strategy involves retraining machine learning models at a fixed frequency, such as daily, weekly, monthly, or yearly. This strategy is a good trade-off between simplicity and keeping your model up-to-date. However, the downside is that you might be retraining your model without any actual need, which can get expensive, especially if you’re using cloud-based or external infrastructure.
The third strategy is to retrain machine learning models dynamically, as its performance gets compromised. This means you only retrain when it’s needed. This strategy can save resources, but it’s also the most complex to implement and can be operationally cumbersome. It’s also subjective to determine if the model has actually degraded or not.
The best strategy depends on your specific needs and circumstances. If you’re just starting to embrace AI, the third strategy might be overkill. Instead, you might want to consider the first or second strategy.
One approach is to align your retraining schedule with the seasonal period of your business. Alternatively, you could conduct a simulation to determine the optimal retraining frequency. Start by simulating what would happen if you retrained your model at a very high frequency, then gradually decrease the frequency until you see the performance start to degrade. This point is where your model starts to get outdated, and it’s a good trade-off between the cost of retraining your model and the profit you’re losing due to performance degradation.
The answer to “How often should you retrain machine learning models” depends on various factors, including your business needs, the dynamic nature of your environment, and the cost of retraining. By understanding these factors and applying the right strategy, you can ensure your models remain effective and deliver the best results for your business.
If want to learn more about AI and machine learning, check out our online courses at NILG.AI. We offer free previews so you can start learning and implementing AI in your business today. You can also book a meeting with us today so we can help you understand and implement AI in your business.
Like this story?
Special offers, latest news and quality content in your inbox.
Jun 5, 2025 in Industry Overview
Master quality control automation with proven strategies that drive real results. Discover practical insights from industry leaders.
Jun 5, 2025 in Industry Overview
Explore the best predictive maintenance tools transforming industries in 2025. Maximize asset uptime and efficiency with AI-powered solutions.
Jun 5, 2025 in Industry Overview
Transform operations with supply chain predictive analytics. Proven strategies, real results, and implementation insights from industry leaders.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |