Coping with the challenge of integrating AI into your business? You’re not alone. Many companies struggle to find the right approach to AI, often getting lost in technical details or data management issues. However, there’s a solution that transcends these common pitfalls: Business-centric AI. This transformative strategy is the perfect way to align your core business values and goals with AI.
In this article, we’ll explore the benefits of employing a business-centric AI strategy and compare it to other approaches like model-centric AI and data-centric AI.
Business-centric AI Explained
Business-centric AI should be the industry standard when embracing AI in any company. Think of it like starting a new department that needs the right information to perform well and, in return, deliver impactful outputs.
This method is about fitting AI into your business pipeline, business processes, and company culture. This approach involves asking key questions such as, ‘How can AI help me fulfill my mission?’ or ‘Can I adjust how I make a certain decision based on the new opportunities AI provides?’
By embracing this approach, your entire organization shifts towards a mindset where AI is not just an add-on but a driving force for continuous improvement and innovation across all business facets.
FREE eBook: How to transform your business with AI
Download our eBook and discover the most common pitfalls when implementing AI projects and how to prevent them.
Model-centric AI is a common approach in academia and machine learning courses, with a strong focus on the modeling component. This approach assumes that the data is already prepared and doesn’t require much change. The central part is creating and fine-tuning the AI model.
You can identify someone with a model-centric perspective when they ask questions like, “Is this a classification model?” or “Should I use a neural network or a decision tree?“
Data-centric AI Explained
Data-centric AI focuses on improving the quality of the data used by AI models. When trying to fix or improve a predictive problem, the focus isn’t on having a better model but a better dataset to feed the model.
This means ensuring the data is accurate, clean, and comprehensive, possibly by adding more detailed data or looking at different data sources. The increase in performance you can gain from having better data outweighs the marginal increase you can get from changing the model.
Why Choose Business-Centric AI Over Model-centric AI and Data-centric AI
Opting for business-centric AI over model-centric or data-centric approaches offers a more holistic integration of AI into your company’s fabric. This approach ensures that AI becomes a key driver of business goals, whether enhancing customer experience, boosting efficiency, or fostering innovation.
Business-centric AI delivers more sustainable and impactful results, making it a comprehensive choice for companies looking to fully leverage AI capabilities.
Conclusion
In conclusion, while model-centric and data-centric AI have their place, the business-centric approach will revolutionize your company’s AI integration. Remember, the future of AI is business-centric. Embrace this strategy and unlock AI’s full potential in your company’s growth.
For a more in-depth exploration of how to harness the transformative power of AI in your business, check out our e-book, “How to Transform your Business with AI.” This comprehensive guide provides practical insights to help you navigate and implement AI effectively. Download your copy today for free and begin your journey towards a smarter, AI-driven future for your business.
Like this story?
Subscribe to Our Newsletter
Special offers, latest news and quality content in your inbox.
Signup single post
Recommended Articles
Article
Transform Your Business with Intelligent Process Automation
May 6, 2025 in
Industry Overview
Demystifying Intelligent Process Automation: Beyond Basic Automation Intelligent Process Automation (IPA) is so much more than just putting repetitive tasks on autopilot. Think of it as a whole new way businesses are approaching process improvement. We’re not just talking about simple rule-based automation anymore; we’re talking systems that learn and adapt as they go. That […]
Overcoming Digital Transformation Challenges: Expert Tips
May 4, 2025 in
Industry Overview
Beyond Anarchy: Climbing the Digital Transformation Ladder Ready to move past digital chaos and embrace data-driven decisions? This list tackles 8 key digital transformation challenges, guiding you from basic SOPs to advanced AI. We’ll cover hurdles like legacy system integration, cultural resistance, security concerns, talent shortages, and budget constraints. Learn how to define your digital […]
8 Analytic Data Solutions Powering Businesses in 2025
May 2, 2025 in
Industry Overview
Unlocking the Power of Data: A 2025 Perspective In 2025, data is the key to smart decisions. This listicle spotlights eight leading analytic data solutions—Tableau, Microsoft Power BI, Google BigQuery, Amazon Redshift, Snowflake, Apache Spark, SAS Analytics, and Databricks—to help your business thrive. We'll show you how these platforms transform raw data into actionable insights, […]
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.